If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16.1t^2=34.641t
We move all terms to the left:
16.1t^2-(34.641t)=0
We add all the numbers together, and all the variables
16.1t^2-(+34.641t)=0
We get rid of parentheses
16.1t^2-34.641t=0
a = 16.1; b = -34.641; c = 0;
Δ = b2-4ac
Δ = -34.6412-4·16.1·0
Δ = 1199.998881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34.641)-\sqrt{1199.998881}}{2*16.1}=\frac{34.641-\sqrt{1199.998881}}{32.2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34.641)+\sqrt{1199.998881}}{2*16.1}=\frac{34.641+\sqrt{1199.998881}}{32.2} $
| 16v=7v+54 | | 16=s/3+13 | | 16v+7v=54 | | 6(e+4)=42 | | 0.3x-2=20.5 | | 5n-2-6=3 | | 5x+12=x3+20 | | c+15/4=7 | | 5n-2-6=-3 | | 8-2(1+6k)=-33 | | 8b+8=6b-44 | | 5.12+27.10=1x | | 4b+7=2b-5 | | -16=-2x+6(x-6) | | -5x-4=-3x-9 | | 3a+2a=125 | | 6x-5(2x-1)-x=5-5x | | 2(2t-9)=18 | | 60x-40x=240 | | 2b-4=5b+3 | | 8(w-3)-4w=8 | | (2x-1)+(5x-40)=180 | | 22.33+32=1x | | 2(b-2)=5b+3 | | 6=-2x=22 | | 5(−2x−1)−5x+2=13 | | 4(2x-3)+4=x-8 | | 2y+.5=2/3 | | 5x+57=128 | | -7/6+11/5m=m-13/6-1/2 | | 30.98+40=1x | | 112.74=9.2p-9.7 |